On closeness between an entire function of completely regular growth and its Phragmen-Lindelof indicator

IGOR CHYZHYKOV

University of Warmia and Mazury in Olsztyn (Olsztyn, Poland), Ivan Franko National University of Lviv (Lviv, Ukraine)

chyzhykov@yahoo.com

Let $\rho(r)$ be a proximate order, $\rho(r) \to \rho$, $r \to \infty$. Let f be an entire function of proximate order ρ , that is $\log \max\{|f(z)| : |z| = r\} = O(r^{\rho(r)}), r \to \infty$. The function

$$h_f(\theta) = \limsup_{r \to \infty} \frac{\log |f(re^{i\theta})|}{r^{\rho(r)}}$$

is called the *indicator of* f. The indicator is a ρ -trigonometrically convex function (being a constant for $\rho = 0$).

An entire function f is called an *entire function of completely regular growth* ([1]) if

$$\log |f(re^{i\theta})| = h_f(\theta)r^{\rho(r)} + \varepsilon(re^{i\theta})r^{\rho(r)},$$

where $\varepsilon(re^{i\theta})$ tends to 0 uniformly outside E as $re^{i\theta} \to \infty$, and E is a C_0 -set, i.e. $E \subset \bigcup_k D(z_k, r_k), \quad \sum_{|z_k| < r} r_k = o(r), \quad r \to \infty.$

We are interested in the interplay between estimates outside exceptional sets of $\varepsilon(re^{i\theta})$ and the zero distribution of f.

In the case when all zeros are located on a finite number of rays emanating from the origin and $\varepsilon(re^{i\theta}) = O(|z|^{\rho_1-\rho})$ as $|z| \to \infty$ outside some exceptional set *E* of values *z*, for some $\rho_1 < \rho$, the problem was solved in [2] and [3]. We consider the general case using an approach from [4].

- Levin B. Ya. Distribution of zeros of entire functions. Amer. Math. Soc. Providence, R.I., 1980.
- B. V. Vynnyts'kyi, R. V. Khats'. On asymptotic behaviour of entire functions of nonentire order, Mat. Stud. 21 (2004), no.2, 140-150. (in Ukrainian)
- B. V. Vynnyts'kyi, R. V. Khats'. On growth regularity of an entire function of nonentire order with zeros on a finite system of rays, Mat. Stud. 22 (2005), no.1, 31-38. (in Ukrainian)
- Yulmukhametov R.S. Asymptotics of the difference of subharmonic functions, Mathematical notes, 41 (1987), no.3, 199-204.